7,152 research outputs found

    Multidimensional Pareto optimization of touchscreen keyboards for speed, familiarity and improved spell checking

    Get PDF
    The paper presents a new optimization technique for keyboard layouts based on Pareto front optimization. We used this multifactorial technique to create two new touchscreen phone keyboard layouts based on three design metrics: minimizing finger travel distance in order to maximize text entry speed, a new metric to maximize the quality of spell correction quality by minimizing neighbouring key ambiguity, and maximizing familiarity through a similarity function with the standard Qwerty layout. The paper describes the optimization process and resulting layouts for a standard trapezoid shaped keyboard and a more rectangular layout. Fitts' law modelling shows a predicted 11% improvement in entry speed without taking into account the significantly improved error correction potential and the subsequent effect on speed. In initial user tests typing speed dropped from approx. 21wpm with Qwerty to 13wpm (64%) on first use of our layout but recovered to 18wpm (85%) within four short trial sessions, and was still improving. NASA TLX forms showed no significant difference on load between Qwerty and our new layout use in the fourth session. Together we believe this shows the new layouts are faster and can be quickly adopted by users

    Ensemble decision making in real-time games

    Get PDF

    EvoTanks: co-evolutionary development of game-playing agents

    Get PDF
    This paper describes the EvoTanks research project, a continuing attempt to develop strong AI players for a primitive 'Combat' style video game using evolutionary computational methods with artificial neural networks. A small but challenging feat due to the necessity for agent's actions to rely heavily on opponent behaviour. Previous investigation has shown the agents are capable of developing high performance behaviours by evolving against scripted opponents; however these are local to the trained opponent. The focus of this paper shows results from the use of co-evolution on the same population. Results show agents no longer succumb to trappings of local maxima within the search space and are capable of converging on high fitness behaviours local to their population without the use of scripted opponents

    A combinatorial spanning tree model for knot Floer homology

    Get PDF
    We iterate Manolescu's unoriented skein exact triangle in knot Floer homology with coefficients in the field of rational functions over Z/2Z\mathbb{Z}/2\mathbb{Z}. The result is a spectral sequence which converges to a stabilized version of delta-graded knot Floer homology. The (E2,d2)(E_2,d_2) page of this spectral sequence is an algorithmically computable chain complex expressed in terms of spanning trees, and we show that there are no higher differentials. This gives the first combinatorial spanning tree model for knot Floer homology.Comment: 58 pages, 18 figures. Published version, with updated reference
    • 

    corecore